Hydrogen is the simplest atom of nature. There is one proton in its nucleus and an electron moves around the nucleus in a circular orbit. According to Niels Bohr, this electron moves in a stationary orbit. When this electron is in the stationary orbit, it emits no electromagnetic radiation. The angular momentum of the electron is quantized, i.e., $mvr = (nh/2\pi)$, where $m =$ mass of the electron, $v =$ velocity of the electron in the orbit, r = radius of the orbit, and $n = 1, 2, 3,...$ When transition takes place from Kth orbit to Jth orbit, energy photon is emitted. If the wavelength of the emitted photon is λ ,

we find that
$$
\frac{1}{\lambda} = R \left[\frac{1}{J^2} - \frac{1}{K^2} \right]
$$
, where *R* is
Rydberg's constant.

On a different planet, the hydrogen ze atom's structure was somewhat different from ours. The angular momentum of electron was $P = 2n(h/2\pi)$, i.e., an even multiple of $(h/2\pi)$.

Fig. 4.61

Answer the following questions regarding the other planet based on above passage:

1. The minimum permissible radius of the orbit will be

a.
$$
\frac{2\varepsilon_0 h^2}{m\pi e^2}
$$
 b. $\frac{4\varepsilon_0 h^2}{m\pi e^2}$ **c.** $\frac{\varepsilon_0 h^2}{m\pi e^2}$ **d.** $\frac{\varepsilon_0 h^2}{2m\pi e^2}$

2. In our world, the velocity of electron is v_0 when the hydrogen atom is in the ground state. The velocity of electron in this state on the other planet should be

a. v_0 **b.** $v_0/2$ **c.** $v_0/4$ **d.** $v_0/8$ 3. In our world, the ionization potential energy of a hydrogen atom is 13.6 eV. On the other planet, this ionization potential energy will be

a. 13.6 eV **b.** 3.4 eV **c.** 1.5 eV **d.** 0.85 eV

1. b. On other planet: $mvr = 2n \frac{h}{2\pi} \Rightarrow v = \frac{nh}{\pi m}$ 2π π mr $\frac{1}{1}e^2$ \Rightarrow $\frac{mn^2h^2}{2n}$ mv^2 $\frac{1}{4\pi\epsilon_0} \frac{1}{r^2}$ \Rightarrow $\frac{1}{n^2 m^2 r^3} = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2}$ $=\frac{4h^2\varepsilon_0}{2}$ $4\pi\epsilon_0 r^2$ Putting $n = 1$, we get $r =$ $m\pi e^2$ e^{\prime} **2. b.** On our planet: $v_0 = \frac{1}{2\varepsilon_0 nh}$ On other planet: $v = \frac{1}{2}$ $\frac{e^2}{2} = \frac{v_0}{2}$ $2\varepsilon_0(2n)h$ 2 13.6 **3. b.** On our planet: $E_n =$ n 13.6 On other planet: E_n' = $(2n)^2$ $\Rightarrow E'_n = \frac{E_n}{4} = -3.4 \text{ eV}$